Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Emerg Infect Dis ; 30(3): 413-422, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38407169

RESUMEN

Streptococcus suis, a zoonotic bacterial pathogen circulated through swine, can cause severe infections in humans. Because human S. suis infections are not notifiable in most countries, incidence is underestimated. We aimed to increase insight into the molecular epidemiology of human S. suis infections in Europe. To procure data, we surveyed 7 reference laboratories and performed a systematic review of the scientific literature. We identified 236 cases of human S. suis infection from those sources and an additional 87 by scanning gray literature. We performed whole-genome sequencing to type 46 zoonotic S. suis isolates and combined them with 28 publicly available genomes in a core-genome phylogeny. Clonal complex (CC) 1 isolates accounted for 87% of typed human infections; CC20, CC25, CC87, and CC94 also caused infections. Emergence of diverse zoonotic clades and notable severity of illness in humans support classifying S. suis infection as a notifiable condition.


Asunto(s)
Streptococcus suis , Humanos , Animales , Porcinos , Epidemiología Molecular , Streptococcus suis/genética , Europa (Continente)/epidemiología , Filogenia , Secuenciación Completa del Genoma
2.
PLoS One ; 19(1): e0297626, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38271388

RESUMEN

INTRODUCTION: Antimicrobial resistance (AMR) is a global threat that necessitates coordinated strategies to improve antibiotic prescribing and reduce AMR. A key activity is ascertaining current prescribing patterns in hospitals to identify targets for quality improvement programmes. METHODS: The World Health Organisation point prevalence survey methodology was used to assess antibiotic prescribing in the Cape Coast Teaching Hospital. All core variables identified by the methodology were recorded. RESULTS: A total of 78.8% (82/104) patients were prescribed at least one antibiotic, with the majority from adult surgical wards (52.14%). Significantly longer hospital stays were associated with patients who underwent surgery (p = 0.0423). "Access" antibiotics dominated total prescriptions (63.8%, 132/207) with ceftriaxone, cefuroxime, and ciprofloxacin being the most prescribed "Watch" antibiotics. The most common indications were for medical prophylaxis (59.8%, 49/82) and surgical prophylaxis (46.3%, 38/82). Over one-third of surgical prophylaxis (34.2%, 13/38) indications extended beyond one day. There was moderate documentation of reasons for antibiotic treatment in patient notes (65.9%, 54/82), and targeted therapy after samples were taken for antimicrobial susceptibility testing (41.7%, 10/24). Guideline compliance was low (25%) where available. CONCLUSIONS: There was high use of antibiotics within the hospital which needs addressing. Identified quality targets include developing surgical prophylaxis guidelines, reviewing "Watch" antibiotic prescribing, and assessing antibiotic durations for patients on two or more antibiotics. Organizational-level deficiencies were also identified that need addressing to help instigate ASPs. These can be addressed by developing local prescribing protocols and antibiotic stewardship policies in this hospital and wider in Ghana and across Africa.


Asunto(s)
Antibacterianos , Programas de Optimización del Uso de los Antimicrobianos , Adulto , Humanos , Antibacterianos/uso terapéutico , Ghana/epidemiología , Prevalencia , Encuestas y Cuestionarios , Hospitales de Enseñanza , Prescripciones de Medicamentos
3.
Antibiotics (Basel) ; 12(3)2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36978411

RESUMEN

Streptococcus agalactiae or group B streptococcus (GBS) is a leading cause of neonatal sepsis and increasingly found as an invasive pathogen in older patient populations. Beta-lactam antibiotics remain the most effective therapeutic with resistance rarely reported, while the majority of GBS isolates carry the tetracycline resistance gene tet(M) in fixed genomic positions amongst five predominant clonal clades. In the UK, GBS resistance to clindamycin and erythromycin has increased from 3% in 1991 to 11.9% (clindamycin) and 20.2% (erythromycin), as reported in this study. Here, a systematic investigation of antimicrobial resistance genomic content sought to fully characterise the associated mobile genetic elements within phenotypically resistant GBS isolates from 193 invasive and non-invasive infections of UK adult patients collected during 2014 and 2015. Resistance to erythromycin and clindamycin was mediated by erm(A) (16/193, 8.2%), erm(B) (16/193, 8.2%), mef(A)/msr(D) (10/193, 5.1%), lsa(C) (3/193, 1.5%), lnu(C) (1/193, 0.5%), and erm(T) (1/193, 0.5%) genes. The integrative conjugative elements (ICEs) carrying these genes were occasionally found in combination with high gentamicin resistance mediating genes aac(6')-aph(2″), aminoglycoside resistance genes (ant(6-Ia), aph(3'-III), and/or aad(E)), alternative tetracycline resistance genes (tet(O) and tet(S)), and/or chloramphenicol resistance gene cat(Q), mediating resistance to multiple classes of antibiotics. This study provides evidence of the retention of previously reported ICESag37 (n = 4), ICESag236 (n = 2), and ICESpy009 (n = 3), as well as the definition of sixteen novel ICEs and three novel transposons within the GBS lineage, with no evidence of horizontal transfer.

4.
Antimicrob Resist Infect Control ; 11(1): 122, 2022 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-36192790

RESUMEN

BACKGROUND: Antimicrobial resistance (AMR) is a major public health challenge with its impact felt disproportionately in Western Sub-Saharan Africa. Routine microbiology investigations serve as a rich source of AMR monitoring and surveillance data. Geographical variations in susceptibility patterns necessitate regional and institutional tracking of resistance patterns to aid in tailored Antimicrobial Stewardship (AMS) interventions to improve antibiotic use in such settings. This study focused on developing a cumulative antibiogram of bacterial isolates from clinical samples at the Cape Coast Teaching Hospital (CCTH). This was ultimately to improve AMS by guiding empiric therapy. METHODS: A hospital-based longitudinal study involving standard microbiological procedures was conducted from 1st January to 31st December 2020. Isolates from routine diagnostic aerobic cultures were identified by colony morphology, Gram staining, and conventional biochemical tests. Isolates were subjected to antibiotic susceptibility testing using Kirby-Bauer disc diffusion. Inhibitory zone diameters were interpreted per the Clinical and Laboratory Standards Institute guidelines and were entered and analysed on the WHONET software using the "first isolate only" principle. RESULTS: Overall, low to moderate susceptibility was observed in most pathogen-antibiotic combinations analysed in the study. Amikacin showed the highest susceptibility (86%, n = 537/626) against all Gram-negatives with ampicillin exhibiting the lowest (6%, n = 27/480). Among the Gram-positives, the highest susceptibilities were exhibited by gentamicin (78%, n = 124/159), with clindamycin having the lowest susceptibility (27%, n = 41/154). Among the Gram-negatives, 66% (n = 426/648) of the isolates were identified phenotypically as potential extended-spectrum beta-lactamase producers. Multiple multidrug-resistant isolates were also identified among both Gram-positive and Gram-negative isolates. Low to moderate susceptibility was found against first- and second-line antibiotics recommended in the National standard treatment guidelines (NSTG). Laboratory quality management deficiencies and a turnaround time of 3.4 days were the major AMS barriers identified. CONCLUSIONS: Low to moderate susceptibilities coupled with high rates of phenotypic resistance warrant tailoring NSTGs to fit local contexts within CCTH even after considering the biases in these results. The cumulative antibiogram proved a key AMS programme component after its communication to clinicians and subsequent monitoring of its influence on prescribing indicators. This should be adopted to enhance such programmes across the country.


Asunto(s)
Programas de Optimización del Uso de los Antimicrobianos , Amicacina , Ampicilina , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Clindamicina , Gentamicinas , Ghana/epidemiología , Hospitales de Enseñanza , Humanos , Estudios Longitudinales , Pruebas de Sensibilidad Microbiana , beta-Lactamasas
5.
J Antimicrob Chemother ; 77(11): 3126-3129, 2022 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-36048620

RESUMEN

OBJECTIVES: To determine the phenotypic and genotypic antibiotic susceptibility of Mycoplasma amphoriforme isolates recovered from patients in the UK and Denmark. METHODS: Seven isolates of M. amphoriforme were examined for antimicrobial susceptibility to seven antibiotics using the microbroth dilution assay in line with the CLSI guidelines for mycoplasmas. Each isolate was additionally subjected to WGS to identify resistance-associated mutations. Based on the consensus sequences from the genomic data, PCR primers were designed, and tested, for the amplification of the QRDR within the parC gene. RESULTS: Of the seven isolates investigated, four (57%) were resistant to moxifloxacin (0.5-1 mg/L) and levofloxacin (1-2 mg/L), compared with those that were susceptible (0.03-0.06 and 0.006 mg/L, respectively). Isolate H29 was resistant to five of the seven antibiotics tested: moxifloxacin, 0.5 mg/L; levofloxacin, 2 mg/L; azithromycin, 64 mg/L; erythromycin, 128 mg/L; and clindamycin, 64 mg/L. All isolates were susceptible to tetracycline (0.06 mg/L) and lefamulin (0.001-0.004 mg/L). Mutations from genomic data confirmed the presence of an S89F mutation within the ParC protein among all fluoroquinolone-resistant isolates and an A2059G mutation in the 23S rRNA gene in the macrolide- and lincosamide-resistant isolate H29. CONCLUSIONS: To the best of our knowledge, this is the first time where phenotypic and genotypic resistance data have been paired for M. amphoriforme confirming a correlation between the two. These data suggest the need for focused testing and resistance determination of isolates from high-risk patients given the backdrop of a high prevalence of antimicrobial resistance.


Asunto(s)
Antibacterianos , Levofloxacino , Humanos , Moxifloxacino , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Dinamarca , Reino Unido , Farmacorresistencia Bacteriana
7.
Euro Surveill ; 27(19)2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35551702

RESUMEN

BackgroundMycoplasma pneumoniae respiratory infections are transmitted by aerosol and droplets in close contact.AimWe investigated global M. pneumoniae incidence after implementation of non-pharmaceutical interventions (NPIs) against COVID-19 in March 2020.MethodsWe surveyed M. pneumoniae detections from laboratories and surveillance systems (national or regional) across the world from 1 April 2020 to 31 March 2021 and compared them with cases from corresponding months between 2017 and 2020. Macrolide-resistant M. pneumoniae (MRMp) data were collected from 1 April 2017 to 31 March 2021.ResultsThirty-seven sites from 21 countries in Europe, Asia, America and Oceania submitted valid datasets (631,104 tests). Among the 30,617 M. pneumoniae detections, 62.39% were based on direct test methods (predominantly PCR), 34.24% on a combination of PCR and serology (no distinction between methods) and 3.37% on serology alone (only IgM considered). In all countries, M. pneumoniae incidence by direct test methods declined significantly after implementation of NPIs with a mean of 1.69% (SD ± 3.30) compared with 8.61% (SD ± 10.62) in previous years (p < 0.01). Detection rates decreased with direct but not with indirect test methods (serology) (-93.51% vs + 18.08%; p < 0.01). Direct detections remained low worldwide throughout April 2020 to March 2021 despite widely differing lockdown or school closure periods. Seven sites (Europe, Asia and America) reported MRMp detections in one of 22 investigated cases in April 2020 to March 2021 and 176 of 762 (23.10%) in previous years (p = 0.04).ConclusionsThis comprehensive collection of M. pneumoniae detections worldwide shows correlation between COVID-19 NPIs and significantly reduced detection numbers.


Asunto(s)
COVID-19 , Neumonía por Mycoplasma , COVID-19/epidemiología , Control de Enfermedades Transmisibles , Humanos , Macrólidos , Mycoplasma pneumoniae/genética , Pandemias , Neumonía por Mycoplasma/diagnóstico , Neumonía por Mycoplasma/epidemiología
8.
Microb Genom ; 8(3)2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35290175

RESUMEN

Cases of invasive group B streptococcal infection in the adult UK population have steadily increased over recent years, with the most common serotypes being V, III and Ia, but less is known of the genetic background of these strains. We have carried out in-depth analysis of the whole-genome sequences of 193 clinically important group B Streptococcus (GBS) isolates (184 were from invasive infection, 8 were from non-invasive infection and 1 had no information on isolation site) isolated from adults and submitted to the National Reference Laboratory at the UK Health Security Agency between January 2014 and December 2015. We have determined that capsular serotypes III (26.9%), Ia (26.4%) and V (15.0%) were most commonly identified, with slight differences in gender and age distribution. Most isolates (n=182) grouped to five clonal complexes (CCs), CC1, CC8/CC10, CC17, CC19 and CC23, with common associations between specific serotypes and virulence genes. Additionally, we have identified large recombination events mediating potential capsular switching events between sequence type (ST)1 serotype V and serotypes Ib (n=2 isolates), II (n=2 isolates) and VI (n=2 isolates); between ST19 serotype III and serotype V (n=5 isolates); and between CC17 serotype III and serotype IV (n=1 isolate). The high genetic diversity of disease-causing isolates and multiple recombination events reported in this study highlight the need for routine surveillance of the circulating disease-causing GBS strains. This information is crucial to better understand the global spread of GBS serotypes and genotypes, and will form the baseline information for any future GBS vaccine research in the UK and worldwide.


Asunto(s)
Infecciones Estreptocócicas , Streptococcus agalactiae , Adulto , Humanos , Tipificación de Secuencias Multilocus , Recombinación Genética , Infecciones Estreptocócicas/epidemiología , Streptococcus agalactiae/genética , Reino Unido/epidemiología
9.
Antimicrob Resist Infect Control ; 11(1): 49, 2022 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-35296353

RESUMEN

BACKGROUND: The burden of antibiotic resistant infection is mainly felt in low-to-middle income countries, where the rate of antimicrobial resistance is largely under-surveyed and under huge pressure from unregulated, disparate and often self-guided access to antimicrobials. Nosocomial infections from hospital environments have been shown to be a particularly prevalent source of multi-drug resistant strains, yet surveillance of hospital environmental contamination is often not investigated. METHODS: The study was prospective, observational and cross-sectional, sampling 231 high and low touch surfaces from 15th March to 13th April 2021, from five wards in the Cape Coast Teaching Hospital, Ghana. Microbial growth in the presence of vancomycin and either meropenem or cefotaxime was examined and bacterial species were identified by MALDI-TOF. The presence of common extended-spectrum ß-lactamases (ESBL) and carbapenemase antimicrobial resistance genes (ARG) were identified through PCR screening, which were confirmed by phenotypic antimicrobial susceptibility determination. Isolates positive for carbapenem resistance genes were sequenced using a multi-platform approach. RESULTS: We recovered microbial growth from 99% of swabs (n = 229/231) plated on agar in the absence of antimicrobials. Multiple sites were found to be colonised with resistant bacteria throughout the hospital setting. Bacteria with multi-drug resistance and ARG of concern were isolated from high and low touch points with evidence of strain dissemination throughout the environment. A total of 21 differing species of bacteria carrying ARG were isolated. The high prevalence of Acinetobacter baumannii carrying blaNDM-1 observed was further characterised by whole genome sequencing and phylogenetic analysis to determine the relationship between resistant strains found in different wards. CONCLUSION: Evidence of multiple clonal incursions of MDR bacteria of high sepsis risk were found in two separate wards for a regional hospital in Ghana. The prevalence of multiple blaNDM carrying species in combination with combinations of ESBLs was particularly concerning and unexpected in Africa. We also identify strains carrying tet(X3), blaVIM-5 or blaDIM-1 showing a high diversity of carbapenamases present as a reservoir in a hospital setting. Findings of multi-drug resistant bacteria from multiple environmental sites throughout the hospital will inform future IPC practices and aid research prioritisation for AMR in Ghana.


Asunto(s)
Antibacterianos , Bacterias Gramnegativas , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Proteínas Bacterianas , Estudios Transversales , Monitoreo del Ambiente , Ghana/epidemiología , Bacterias Gramnegativas/genética , Humanos , Pruebas de Sensibilidad Microbiana , Filogenia , Estudios Prospectivos , Centros de Atención Terciaria , beta-Lactamasas
11.
Emerg Infect Dis ; 27(11): 2950-2952, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34670660

RESUMEN

Both Legionella pneumophila and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can cause pneumonia. L. pneumophila is acquired from water sources, sometimes in healthcare settings. We report 2 fatal cases of L. pneumophila and SARS-CoV-2 co-infection in England. Clinicians should be aware of possible L. pneumophila infections among SARS-CoV-2 patients.


Asunto(s)
COVID-19 , Coinfección , Legionella pneumophila , Enfermedad de los Legionarios , Humanos , Enfermedad de los Legionarios/diagnóstico , SARS-CoV-2
12.
Clin Microbiol Infect ; 27(11): 1697.e1-1697.e5, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34186210

RESUMEN

OBJECTIVES: To determine the presence and genotypic macrolide susceptibility of Mycoplasma amphoriforme, and the presence of Ureaplasma spp. and Mycoplasma fermentans among clinical samples from England previously investigated for Mycoplasma pneumoniae. METHODS: Quantitative and conventional PCR methods were used to retrospectively screen a collection of 160 clinical samples previously submitted to Public Health England (PHE) for the detection of M. pneumoniae between October 2016 and December 2017. Samples which were positive for M. amphoriforme DNA were further investigated for mutations associated with genotypic macrolide resistance by sequencing domain V of the 23s rRNA. RESULTS: M. amphoriforme was detected in 10/160 samples (6.3%), Ureaplasma parvum was detected in 4/160 samples (2.5%), and M. fermentans was not detected in any samples (0/160). Of the nine individuals (two samples were from the same patient) in which M. amphoriforme was detected, eight were male (age range 10-60 years) and one was female (age range 30-40 years). One individual with cystic fibrosis was positive for both M. amphoriforme and U. parvum. All M. amphoriforme DNA was genotypically susceptible to macrolides. CONCLUSIONS: Mycoplasma amphoriforme was found in clinical samples, including lower respiratory tract samples of patients with pneumonia. In the absence of other respiratory pathogens, these data suggest a potential role for this organism in human disease, with no evidence of acquired macrolide resistance. Ureaplasma parvum was detected in cerebrospinal fluid and respiratory tract samples. These data suggest that there is a need to consider these atypical respiratory pathogens in future diagnostic investigations.


Asunto(s)
Infecciones por Mycoplasma , Mycoplasma fermentans , Mycoplasma/aislamiento & purificación , Ureaplasma/aislamiento & purificación , Adolescente , Adulto , Antibacterianos/farmacología , Niño , Farmacorresistencia Bacteriana/genética , Femenino , Humanos , Macrólidos/farmacología , Masculino , Persona de Mediana Edad , Mycoplasma/efectos de los fármacos , Mycoplasma/genética , Infecciones por Mycoplasma/epidemiología , Mycoplasma fermentans/efectos de los fármacos , Mycoplasma fermentans/genética , Mycoplasma fermentans/aislamiento & purificación , Estudios Retrospectivos , Ureaplasma/efectos de los fármacos , Ureaplasma/genética , Adulto Joven
13.
J Antimicrob Chemother ; 76(5): 1113-1116, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33608737

RESUMEN

Legionella pneumophila, a Gram-negative bacillus, is the causative agent of Legionnaire's disease, a form of severe community-acquired pneumonia. Infection can have high morbidity, with a high proportion of patients requiring ICU admission, and up to 10% mortality, which is exacerbated by the lack of efficacy of typical empirical antibiotic therapy against Legionella spp. The fastidious nature of the entire Legionellaceae family historically required inclusion of activated charcoal in the solid medium to remove growth inhibitors, which inherently interferes with accurate antimicrobial susceptibility determination, an acknowledged methodological shortfall, now rectified by a new solid medium that gives results comparable to those of microbroth dilution. Here, as an international Legionella community (with authors representing various international reference laboratories, countries and clinical stakeholders for diagnosis and treatment of legionellosis), we set out recommendations for the standardization of antimicrobial susceptibility testing methods, guidelines and reference strains to facilitate an improved era of antibiotic resistance determination.


Asunto(s)
Legionella pneumophila , Legionella , Enfermedad de los Legionarios , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Humanos , Enfermedad de los Legionarios/diagnóstico , Enfermedad de los Legionarios/tratamiento farmacológico , Estándares de Referencia
14.
Artículo en Inglés | MEDLINE | ID: mdl-33468475

RESUMEN

A minimal genome and absent bacterial cell wall render Mycoplasma hominis inherently resistant to most antimicrobials except lincosamides, tetracyclines, and fluoroquinolones. Often dismissed as a commensal (except where linked to preterm birth), it causes septic arthritis in immunodeficient patients and is increasingly associated with transplant failure (particularly lung) accompanying immunosuppression. We examined antimicrobial susceptibility (AST) on strains archived from 2005 to 2015 submitted to the Public Health England reference laboratory and determined the underlying mechanism of resistance by whole-genome sequencing (WGS). Archived M. hominis strains included 32/115 from invasive infection (sepsis, cerebrospinal [CSF], peritoneal, and pleural fluid) over the 10-year period (6.4% of all samples submitted from 2010 to 2015 were positive). No clindamycin resistance was detected, while two strains were resistant to moxifloxacin and levofloxacin (resistance mutations S83L or E87G in gyrA and S81I or E84V in parC). One of these strains and 11 additional strains were tetracycline resistant, mediated by tet(M) carried within an integrative conjugative element (ICE) consistently integrated at the somatic rumA gene; however, the ICEs varied widely in 5 to 19 associated accessory genes. WGS analysis showed that tet(M)-carrying strains were not clonal, refuting previous speculation that the ICE was broken and immobile. We found tet(M)-positive and -negative strains (including the multiresistant 2015 strain) to be equally susceptible to tigecycline and josamycin; however, the British National Formulary does not include guidance for these. Continued M. hominis investigation and AST surveillance (especially immunocompromised patients) is warranted, and the limited number of therapeutics needs to be expanded in the United Kingdom.


Asunto(s)
Infecciones por Mycoplasma , Nacimiento Prematuro , Antibacterianos/farmacología , Inglaterra , Femenino , Humanos , Recién Nacido , Pruebas de Sensibilidad Microbiana , Infecciones por Mycoplasma/tratamiento farmacológico , Mycoplasma hominis/genética , Embarazo , Resistencia a la Tetraciclina/genética , Reino Unido
15.
J Antimicrob Chemother ; 76(5): 1197-1204, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33367732

RESUMEN

OBJECTIVES: There is a lack of international unification for AST methodology for Legionella pneumophila. Current literature contains multiple possible methods and this study compares each of them to determine methodological concordance. METHODS: Antibiotic susceptibility of 50 L. pneumophila strains was determined using broth microdilution (BMD), serial antimicrobial dilution in traditional buffered charcoal yeast extract (BCYE) agar (as well as comparison with gradient strip overlay on BCYE) and in a novel charcoal-free agar (LASARUS) for rifampicin, azithromycin, levofloxacin and doxycycline. RESULTS: The deviation of tested media relative to BMD highlighted the overall similarity of BMD and LASARUS across all antimicrobials tested (within one serial dilution). BCYE agar dilution showed an increased MIC of up to five serial dilutions relative to BMD, while MICs by gradient strip overlay on BCYE were elevated by two to three serial dilutions, with the exception of doxycycline, which was decreased by three serial dilutions relative to MIC values determined by BMD. The MIC range for azithromycin was wider than for other antimicrobials tested and found to be caused by the presence or absence of the lpeAB gene. CONCLUSIONS: BMD-based antimicrobial susceptibility testing (AST) methodology should be the internationally agreed gold standard for Legionella spp. AST, as is common for other bacterial species. Traditional BCYE gave significantly elevated MIC results and its use should be discontinued for Legionella spp., while MIC determination using LASARUS solid medium gave results concordant (within one serial dilution) with BMD for all antimicrobials tested. To the best of our knowledge, this study is the first to identify the lpeAB gene in UK isolates.


Asunto(s)
Antiinfecciosos , Legionella , Antibacterianos/farmacología , Carbón Orgánico , Pruebas de Sensibilidad Microbiana
16.
Euro Surveill ; 25(2)2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31964459

RESUMEN

BackgroundMycoplasma pneumoniae is a leading cause of community-acquired pneumonia, with large epidemics previously described to occur every 4 to 7 years.AimTo better understand the diagnostic methods used to detect M. pneumoniae; to better understand M. pneumoniae testing and surveillance in use; to identify epidemics; to determine detection number per age group, age demographics for positive detections, concurrence of epidemics and annual peaks across geographical areas; and to determine the effect of geographical location on the timing of epidemics.MethodsA questionnaire was sent in May 2016 to Mycoplasma experts with national or regional responsibility within the ESCMID Study Group for Mycoplasma and Chlamydia Infections in 17 countries across Europe and Israel, retrospectively requesting details on M. pneumoniae-positive samples from January 2011 to April 2016. The Moving Epidemic Method was used to determine epidemic periods and effect of country latitude across the countries for the five periods under investigation.ResultsRepresentatives from 12 countries provided data on M. pneumoniae infections, accounting for 95,666 positive samples. Two laboratories initiated routine macrolide resistance testing since 2013. Between 2011 and 2016, three epidemics were identified: 2011/12, 2014/15 and 2015/16. The distribution of patient ages for M. pneumoniae-positive samples showed three patterns. During epidemic years, an association between country latitude and calendar week when epidemic periods began was noted.ConclusionsAn association between epidemics and latitude was observed. Differences were noted in the age distribution of positive cases and detection methods used and practice. A lack of macrolide resistance monitoring was noted.


Asunto(s)
Infecciones Comunitarias Adquiridas/epidemiología , Epidemias , Mycoplasma pneumoniae/aislamiento & purificación , Neumonía por Mycoplasma/epidemiología , Distribución por Edad , Antibacterianos/uso terapéutico , Infecciones Comunitarias Adquiridas/diagnóstico , Infecciones Comunitarias Adquiridas/microbiología , Farmacorresistencia Bacteriana/efectos de los fármacos , Correo Electrónico , Europa (Continente)/epidemiología , Femenino , Humanos , Israel/epidemiología , Macrólidos/farmacología , Mycoplasma pneumoniae/efectos de los fármacos , Técnicas de Amplificación de Ácido Nucleico , Neumonía por Mycoplasma/diagnóstico , Neumonía por Mycoplasma/tratamiento farmacológico , Estudios Retrospectivos , Encuestas y Cuestionarios
17.
Lancet Infect Dis ; 19(11): 1209-1218, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31519541

RESUMEN

BACKGROUND: Since 2014, England has seen increased scarlet fever activity unprecedented in modern times. In 2016, England's scarlet fever seasonal rise coincided with an unexpected elevation in invasive Streptococcus pyogenes infections. We describe the molecular epidemiological investigation of these events. METHODS: We analysed changes in S pyogenes emm genotypes, and notifications of scarlet fever and invasive disease in 2014-16 using regional (northwest London) and national (England and Wales) data. Genomes of 135 non-invasive and 552 invasive emm1 isolates from 2009-16 were analysed and compared with 2800 global emm1 sequences. Transcript and protein expression of streptococcal pyrogenic exotoxin A (SpeA; also known as scarlet fever or erythrogenic toxin A) in sequenced, non-invasive emm1 isolates was quantified by real-time PCR and western blot analyses. FINDINGS: Coincident with national increases in scarlet fever and invasive disease notifications, emm1 S pyogenes upper respiratory tract isolates increased significantly in northwest London in the March to May period, from five (5%) of 96 isolates in 2014, to 28 (19%) of 147 isolates in 2015 (p=0·0021 vs 2014 values), to 47 (33%) of 144 in 2016 (p=0·0080 vs 2015 values). Similarly, invasive emm1 isolates collected nationally in the same period increased from 183 (31%) of 587 in 2015 to 267 (42%) of 637 in 2016 (p<0·0001). Sequences of emm1 isolates from 2009-16 showed emergence of a new emm1 lineage (designated M1UK)-with overlap of pharyngitis, scarlet fever, and invasive M1UK strains-which could be genotypically distinguished from pandemic emm1 isolates (M1global) by 27 single-nucleotide polymorphisms. Median SpeA protein concentration in supernatant was nine-times higher among M1UK isolates (190·2 ng/mL [IQR 168·9-200·4]; n=10) than M1global isolates (20·9 ng/mL [0·0-27·3]; n=10; p<0·0001). M1UK expanded nationally to represent 252 (84%) of all 299 emm1 genomes in 2016. Phylogenetic analysis of published datasets identified single M1UK isolates in Denmark and the USA. INTERPRETATION: A dominant new emm1 S pyogenes lineage characterised by increased SpeA production has emerged during increased S pyogenes activity in England. The expanded reservoir of M1UK and recognised invasive potential of emm1 S pyogenes provide plausible explanation for the increased incidence of invasive disease, and rationale for global surveillance. FUNDING: UK Medical Research Council, UK National Institute for Health Research, Wellcome Trust, Rosetrees Trust, Stoneygate Trust.


Asunto(s)
Genotipo , Escarlatina/microbiología , Streptococcus pyogenes/clasificación , Streptococcus pyogenes/patogenicidad , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Antígenos Bacterianos/genética , Bacteriemia/epidemiología , Bacteriemia/microbiología , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas Bacterianas/genética , Proteínas Portadoras/genética , Niño , Preescolar , Inglaterra/epidemiología , Exotoxinas/genética , Femenino , Perfilación de la Expresión Génica , Humanos , Incidencia , Lactante , Recién Nacido , Masculino , Proteínas de la Membrana/genética , Persona de Mediana Edad , Epidemiología Molecular , Escarlatina/epidemiología , Streptococcus pyogenes/genética , Streptococcus pyogenes/aislamiento & purificación , Adulto Joven
18.
Microb Genom ; 4(10)2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30312149

RESUMEN

The diversity of Legionella pneumophila populations within single water systems is not well understood, particularly in those unassociated with cases of Legionnaires' disease. Here, we performed genomic analysis of 235 L. pneumophila isolates obtained from 28 water samples in 13 locations within a large occupational building. Despite regular treatment, the water system of this building is thought to have been colonized by L. pneumophila for at least 30 years without evidence of association with Legionnaires' disease cases. All isolates belonged to one of three sequence types (STs), ST27 (n=81), ST68 (n=122) and ST87 (n=32), all three of which have been recovered from Legionnaires' disease patients previously. Pairwise single nucleotide polymorphism differences amongst isolates of the same ST were low, ranging from 0 to 19 in ST27, from 0 to 30 in ST68 and from 0 to 7 in ST87, and no homologous recombination was observed in any lineage. However, there was evidence of horizontal transfer of a plasmid, which was found in all ST87 isolates and only one ST68 isolate. A single ST was found in 10/13 sampled locations, and isolates of each ST were also more similar to those from the same location compared with those from different locations, demonstrating spatial structuring of the population within the water system. These findings provide the first insights into the diversity and genomic evolution of a L. pneumophila population within a complex water system not associated with disease.


Asunto(s)
Transferencia de Gen Horizontal , Genoma Bacteriano , Legionella pneumophila/genética , Filogenia , Plásmidos/genética , Microbiología del Agua , Genómica , Humanos , Legionella pneumophila/aislamiento & purificación , Legionella pneumophila/patogenicidad , Enfermedad de los Legionarios/genética , Enfermedad de los Legionarios/microbiología , Enfermedad de los Legionarios/transmisión
19.
BMC Genomics ; 18(1): 429, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28571573

RESUMEN

BACKGROUND: Group B streptococcus (GBS) capsular polysaccharide is one of the major virulence factors underlying invasive GBS disease and a component of forthcoming vaccines. Serotype classification of GBS is based on the capsule polysaccharide of which ten variants are known to exist (Ia, Ib, II-IX). Current methods for GBS serotype assignment rely on latex agglutination or PCR while more recently a whole genome sequencing method was reported. In this study, three distinct algorithms for serotype assignment from genomic data were assessed using a panel of 790 clinical isolates. METHODS: The first approach utilised the entire capsular locus coupled with a mapping methodology. The second approach continues from the first and utilised a SNP-based methodology across the conserved cpsD-G region to differentiate serotypes Ia-VII and IX. Finally the third approach used the variable cpsG -K region coupled with a mapping methodology. All three approaches were assessed for typeability (percentage of isolates assigned a serotype) and concordance to the latex agglutination methodology. RESULTS: Following comparisons, the third approach using the variable cpsG-K region demonstrated the best performance with 99.9% typeability and 86.7% concordance. Overall, of the 105 discordant isolates, 71 were resolved following retesting of latex agglutination and whole genome sequencing, 20 failed to assign a serotype using latex agglutination and only 14 were found to be truly discordant on re-testing. Comparison of this final approach with the previously described assembly-based approach returned identical results. CONCLUSIONS: These results demonstrated that molecular capsular typing using whole genome sequencing and a mapping-based approach is a viable alternative to the traditional, latex agglutination-based serotyping method and can be implemented in a public health microbiology setting.


Asunto(s)
Genómica , Serotipificación/métodos , Streptococcus agalactiae/clasificación , Streptococcus agalactiae/genética , Secuencia de Bases , Mapeo Cromosómico , Genoma Bacteriano/genética , Polimorfismo de Nucleótido Simple
20.
PeerJ ; 5: e3226, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28462035

RESUMEN

Streptococcus pyogenes group A Streptococcus (GAS) is the most common cause of bacterial throat infections, and can cause mild to severe skin and soft tissue infections, including impetigo, erysipelas, necrotizing fasciitis, as well as systemic and fatal infections including septicaemia and meningitis. Estimated annual incidence for invasive group A streptococcal infection (iGAS) in industrialised countries is approximately three per 100,000 per year. Typing is currently used in England and Wales to monitor bacterial strains of S. pyogenes causing invasive infections and those isolated from patients and healthcare/care workers in cluster and outbreak situations. Sequence analysis of the emm gene is the currently accepted gold standard methodology for GAS typing. A comprehensive database of emm types observed from superficial and invasive GAS strains from England and Wales informs outbreak control teams during investigations. Each year the Bacterial Reference Department, Public Health England (PHE) receives approximately 3,000 GAS isolates from England and Wales. In April 2014 the Bacterial Reference Department, PHE began genomic sequencing of referred S. pyogenes isolates and those pertaining to selected elderly/nursing care or maternity clusters from 2010 to inform future reference services and outbreak analysis (n = 3, 047). In line with the modernizing strategy of PHE, we developed a novel bioinformatics pipeline that can predict emmtypes using whole genome sequence (WGS) data. The efficiency of this method was measured by comparing the emmtype assigned by this method against the result from the current gold standard methodology; concordance to emmsubtype level was observed in 93.8% (2,852/3,040) of our cases, whereas in 2.4% (n = 72) of our cases concordance was observed to emm type level. The remaining 3.8% (n = 117) of our cases corresponded to novel types/subtypes, contamination, laboratory sample transcription errors or problems arising from high sequence similarity of the allele sequence or low mapping coverage. De novo assembly analysis was performed in the two latter groups (n = 72 + 117) and was able to diagnose the problem and where possible resolve the discordance (60/72 and 20/117, respectively). Overall, we have demonstrated that our WGS emm-typing pipeline is a reliable and robust system that can be implemented to determine emm type for the routine service.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...